Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ample genetic variation but no evidence for genotype specificity in an all-parthenogenetic host-parasitoid interaction.

Antagonistic coevolution between hosts and parasites can result in negative frequency-dependent selection and may thus be an important mechanism maintaining genetic variation in populations. Negative frequency-dependence emerges readily if interactions between hosts and parasites are genotype-specific such that no host genotype is most resistant to all parasite genotypes, and no parasite genotype is most infective on all hosts. Although there is increasing evidence for genotype specificity in interactions between hosts and pathogens or microparasites, the picture is less clear for insect host-parasitoid interactions. Here, we addressed this question in the black bean aphid (Aphis fabae) and its most important parasitoid Lysiphlebus fabarum. Because both antagonists are capable of parthenogenetic reproduction, this system allows for powerful tests of genotype x genotype interactions. Our test consisted of exposing multiple host clones to different parthenogenetic lines of parasitoids in all combinations, and this experiment was repeated with animals from four different sites. All aphids were free of endosymbiotic bacteria known to increase resistance to parasitoids. We observed ample genetic variation for host resistance and parasitoid infectivity, but there was no significant host clone x parasitoid line interaction, and this result was consistent across the four sites. Thus, there is no evidence for genotype specificity in the interaction between A. fabae and L. fabarum, suggesting that the observed variation is based on rather general mechanisms of defence and attack.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app