Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cardioprotective effects of angiotensin II type 1 receptor blockade with olmesartan on reperfusion injury in a rat myocardial ischemia-reperfusion model.

We determined the effects of olmesartan on infarct size and cardiac function in a rat ischemia/reperfusion model. Rats underwent 30 min of left coronary artery (CA) occlusion followed by 2 h of reperfusion. In protocol 1, the rats received (by i.v.) 1 mL of vehicle at 10 min after CA occlusion (Group 1, n = 15); olmesartan (0.3 mg/kg) at 10 min after CA occlusion (Group 2, n = 15); 1 mL of vehicle at 5 min before CA reperfusion (Group 3, n = 15); or olmesartan (0.3 mg/kg) 5 min before CA reperfusion (Group 4, n = 15). In protocol 2, the rats received (by i.v.) 1 mL of vehicle at 5 min before CA reperfusion (Group 5, n = 21); or olmesartan (3 mg/kg) at 5 min before CA reperfusion (Group 6, n = 21). Systemic hemodynamics, left ventricular (LV) function, LV ischemic risk zone, no-reflow zone, and infarct size were determined. In protocol 1, olmesartan (0.3 mg/kg) did not affect blood pressure (BP), heart rate, LV +/- dp/dt or LV fractional shortening during the experimental procedure, and did not alter no-reflow or infarct size. In protocol 2, olmesartan (3 mg/kg) significantly reduced infarct size to 21.7 +/- 4.1% from 34.3 +/- 4.1% of risk zone in the vehicle group (P= 0.035), but did not alter the no-reflow size. Prior to CA reperfusion, olmesartan (3 mg/kg) significantly reduced mean BP by 22% and LV +/-dp/dt, but did not affect heart rate. At 2 h after reperfusion, olmesartan significantly decreased heart rate by 21%, mean BP by 14%, and significantly increased LV fractional shortening from 54.1 +/- 1.4% to 61.3 +/- 1.6% (P= 0.0018). Olmesartan significantly reduced myocardial infarct size and improved LV contractility at a dose (3 mg/kg) with systemic vasodilating effects but not at a lower dose (0.3 mg/kg) without hemodynamic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app