Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The role of endoplasmic reticulum stress-related unfolded protein response in the radiocontrast medium-induced renal tubular cell injury.

Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect may have a role in the pathophysiology of CM-induced nephropathy. CM has been shown to affect the endoplasmic reticulum (ER)-related capacity. Unfolded protein response (UPR) is known as a prosurvival response to reduce the accumulation of unfolded proteins and restore normal ER function. However, the role of ER stress-related UPR in the CM-induced renal cell injury still remains unclear. In this study, we examined whether UPR participates in urografin (an ionic CM)-induced renal tubular cells apoptosis. Treatment with urografin in normal rat renal tubular cell line (NRK52E) markedly increased cell apoptosis and decreased cell viability with a dose- and time-dependent manner. The cell necrosis was not increased in urografin-treated cells. Urografin also enhance the induction of ER stress-related markers in NRK52E cells, including glucose-regulated protein (GRP)78 and GRP94 expressions, procaspase-12 cleavage, phosphorylation of PERK (PKR [double-stranded RNA-activated protein kinase]-like ER kinase), and eukaryotic initiation factor 2alpha (eIF2alpha). Salubrinal, a selective inhibitor of eIF2alpha dephosphorylation, effectively decreased urografin-induced cell apoptosis. Furthermore, transfection of GRP78-small interfering RNA in NRK52E cells significantly enhanced urografin-induced cell apoptosis. These results suggest that GRP78/eIF2alpha-related signals play a protective role during UPR, and the activation of ER stress-related UPR may play an important regulative role in urografin-induced renal tubular injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app