Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of a FPGA based fuzzy neural network system for early diagnosis of critical health condition of a patient.

The paper describes the design and training of a fuzzy neural network used for early diagnosis of a patient through an FPGA based implementation of a smart instrument. The system employs a fuzzy interface cascaded with a feed-forward neural network. In order to obtain an optimum decision regarding the future pathophysiological state of a patient, the optimal weights of the synapses between the neurons have been determined by using inverse delayed function model of neurons. The neurons that are considered in the proposed network are devoid of self connections instead of commonly used self connected neurons. The current work also find out the optimal number of neurons in the hidden layer for accurate diagnosis as against the available number of CLB in the FPGA. The system has been trained and tested with renal data of patients taken at 10 days interval of time. Applying the methodology, the chance of attainment of critical renal condition of a patient has been predicted with an accuracy of 95.2%, 30 days ahead of actually attaining the critical condition. The system has also been tested for pathophysiological state prediction of patients at multiple time steps ahead and the prediction at the next instant of time stands out to be the most accurate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app