JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy.

In the present study we developed doxorubicin-loaded solid lipid nanoparticles (SLN-Dox) using biocompatible compounds, assessed the in vitro hemolytic effect, and examined their in vivo effects on drug retention and apoptosis intensity in P-glycoprotein-overexpressing MCF-7/ADR cells, a representative Dox-resistant breast cancer cell line. Our SLNs did not show hemolytic activity in human erythrocytes. In comparison with Dox, SLN-Dox efficiently enhanced apoptotic cell death through the higher accumulation of Dox in MCF-7/ADR cells. Therefore, SLN-Dox have potential to serve as a useful therapeutic approach to overcome the chemoresistance of adriamycin-resistant breast cancer. FROM THE CLINICAL EDITOR: Doxorubicin loaded solid lipid nanoparticles (SLN-Dox) were studied in a cell line representative of doxorubicin resistant breast cancer. The nanoparticles did not show hemolytic activity; furthermore, they efficiently enhanced apoptotic cell death through higher accumulation of doxorubicin in cancer cells. This approach may be viable in overcoming the chemoresistance of adriamycin resistant breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app