JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes.

Nano Letters 2010 Februrary 11
We apply a nanomanipulation technique to assemble pairs of monodispersed octahedral gold nanocrystals (side length, 150 nm) along their major axes with a varying tip-to-tip separation (25-125 nm). These pairs are immobilized onto indium tin oxide coated silica substrates and studied as plasmonic dimers by polarization-selective total internal reflection (TIR) microscopy and spectroscopy. We confirm that the plasmon coupling modes with the scattering polarization along the incident light direction result from the transverse-magnetic-polarized incident light, which induces two near-field-coupled dipole moments oriented normal to the air-substrate interface. In such cases, both in-phase (antibonding) and antiphase (bonding) plasmon coupling modes can be directly observed with the incident light wave vector perpendicular and parallel to the dimer axis, respectively. The observation of antiphase plasmon coupling modes ("dark" plasmons) is made possible by the unique polarization nature of the TIR-generated evanescent field. Furthermore, with decreasing nanocrystal separation, the plasmon coupling modes shift to shorter wavelengths for the incident light perpendicular to the dimer axis, whereas relatively large red shifts of the plasmonic coupling modes are found for the parallel incident light.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app