Add like
Add dislike
Add to saved papers

A computational study of the olefin epoxidation mechanism catalyzed by cyclopentadienyloxidomolybdenum(VI) complexes.

A DFT analysis of the epoxidation of C(2)H(4) by H(2)O(2) and MeOOH (as models of tert-butylhydroperoxide, TBHP) catalyzed by [Cp*MoO(2)Cl] (1) in CHCl(3) and by [Cp*MoO(2)(H(2)O)](+) in water is presented (Cp*=pentamethylcyclopentadienyl). The calculations were performed both in the gas phase and in solution with the use of the conductor-like polarizable continuum model (CPCM). A low-energy pathway has been identified, which starts with the activation of ROOH (R=H or Me) to form a hydro/alkylperoxido derivative, [Cp*MoO(OH)(OOR)Cl] or [Cp*MoO(OH)(OOR)](+) with barriers of 24.9 (26.5) and 28.7 (29.2) kcal mol(-1) for H(2)O(2) (MeOOH), respectively, in solution. The latter barrier, however, is reduced to only 1.0 (1.6) kcal mol(-1) when one additional water molecule is explicitly included in the calculations. The hydro/alkylperoxido ligand in these intermediates is eta(2)-coordinated, with a significant interaction between the Mo center and the O(beta) atom. The subsequent step is a nucleophilic attack of the ethylene molecule on the activated O(alpha) atom, requiring 13.9 (17.8) and 16.1 (17.7) kcal mol(-1) in solution, respectively. The corresponding transformation, catalyzed by the peroxido complex [Cp*MoO(O(2))Cl] in CHCl(3), requires higher barriers for both steps (ROOH activation: 34.3 (35.2) kcal mol(-1); O atom transfer: 28.5 (30.3) kcal mol(-1)), which is attributed to both greater steric crowding and to the greater electron density on the metal atom.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app