JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: effects of gabapentin.

Painful diabetic neuropathy may be due to impairments in descending modulation of nociceptive transmission at the spinal cord. In the present study, streptozotocin diabetic rats (STZ rats) with neuropathic symptoms (mechanical hypersensitivity) were used to perform a time-course evaluation of neuronal activity at the spinal dorsal horn and at the periaqueductal grey matter (PAG), a major brainstem area of pain modulation. The expression of Fos protein, a marker of nociceptive activation, progressively increased at the spinal dorsal horn at 4 and 10 weeks. At the PAG, increases in Fos expression were detected until the 4th week, with a reversal to baseline values at 10 weeks in all areas except the ventrolateral PAG. Co-localisation of Fos with NeuN ascertained the neuronal nature of Fos-expressing cells at the spinal cord and PAG. Four weeks after diabetes induction, the effects of gabapentin (i.p. injection of 50mg/kg, daily during 3 days) were assessed. Gabapentin decreased Fos expression at the spinal cord and PAG and reversed mechanical hypersensitivity. The present study shows that diabetic neuropathy is accompanied by a progressive increase of the spontaneous neuronal activity at the spinal cord. Changes in descending modulation of nociceptive transmission from the PAG are likely to occur during diabetic neuropathy, probably with exacerbation of facilitatory actions. The effects of gabapentin in reversing the behavioural signs of diabetic neuropathy and neuronal hyperactivity in the spinal cord and PAG reinforce the central causes of diabetic neuropathy and point to the central targets of the drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app