Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance.

A hybrid-proline-rich protein encoding gene (CcHyPRP) has been isolated and characterized, for the first time, from the subtracted cDNA library of pigeonpea (Cajanus cajan L.) plants subjected to drought stress. Functionality of CcHyPRP has been validated for abiotic stress tolerance using the heterologous yeast and Arabidopsis systems. The CcHyPRP contained a repetitive proline-rich (PR) N-terminal domain and a conserved eight cysteine motif (8CM) at the C-terminus. Southern analysis disclosed single-copy nature of CcHyPRP gene in the pigeonpea genome. Northern analysis revealed higher levels of CcHyPRP transcripts in PEG, NaCl, heat (42 degrees C), cold and ABA-treated plants compared with the weak signals observed in the untreated plants, suggesting stress-responsive nature of the CcHyPRP gene. In yeast, expression of CcHyPRP imparted marked tolerance against abiotic stresses exerted by PEG, high temperature, NaCl and LiCl. Transgenic Arabidopsis lines, expressing CcHyPRP under the control of CaMV35S and rd29A promoters, when subjected to PEG, mannitol, NaCl, LiCl and heat (42 degrees C) stress, developed into healthy plants with profuse root system and increased biomass in contrast to the weak-stunted wild-type plants. The CcHyPRP-transgenics driven by stress-inducible rd29A exhibited similar stress-tolerance as that of CaMV35S-lines without any negative effects on plant morphology, implying that stress-inducible promoters are preferable for production of stress tolerant transgenics. The overall results amply demonstrate the profound effect of CcHyPRP in bestowing multiple abiotic stress tolerance at cellular and whole plant levels. Accordingly, the multipotent CcHyPRP seems promising as a prime candidate gene to fortify crop plants with abiotic stress tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app