Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Recurrent focal copy-number changes and loss of heterozygosity implicate two noncoding RNAs and one tumor suppressor gene at chromosome 3q13.31 in osteosarcoma.

Cancer Research 2010 January 1
Osteosarcomas are copy number alteration (CNA)-rich malignant bone tumors. Using microarrays, fluorescence in situ hybridization, and quantitative PCR, we characterize a focal region of chr3q13.31 (osteo3q13.31) harboring CNAs in 80% of osteosarcomas. As such, osteo3q13.31 is the most altered region in osteosarcoma and contests the view that CNAs in osteosarcoma are nonrecurrent. Most (67%) osteo3q13.31 CNAs are deletions, with 75% of these monoallelic and frequently accompanied by loss of heterozygosity (LOH) in flanking DNA. Notably, these CNAs often involve the noncoding RNAs LOC285194 and BC040587 and, in some cases, a tumor suppressor gene that encodes the limbic system-associated membrane protein (LSAMP). Ubiquitous changes occur in these genes in osteosarcoma, usually involving loss of expression. Underscoring their functional significance, expression of these genes is correlated with the presence of osteo3q13.31 CNAs. Focal osteo3q13.31 CNAs and LOH are also common in cell lines from other cancers, identifying osteo3q13.31 as a generalized candidate region for tumor suppressor genes. Osteo3q13.31 genes may function as a unit, given significant correlation in their expression despite the great genetic distances between them. In support of this notion, depleting either LSAMP or LOC285194 promoted proliferation of normal osteoblasts by regulation of apoptotic and cell-cycle transcripts and also VEGF receptor 1. Moreover, genetic deletions of LOC285194 or BC040587 were also associated with poor survival of osteosarcoma patients. Our findings identify osteo3q13.31 as a novel region of cooperatively acting tumor suppressor genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app