Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The effect of feed composition on the behavior of chemically selective displacement systems.

In this paper we examine whether adding a more retained protein to the feed will mitigate displacer-protein interactions in the column, thus affecting the displacement modality that occurs (chemically selective vs. traditional displacement chromatography). STD-NMR experiments were carried out to probe displacer-protein interactions for the chemically selective displacer chloroquine diphosphate and the results indicated that this displacer only had measurable interactions with the protein alpha-chymotrypsinogen A. For a two component feed mixture containing ribonuclease A and alpha-chymotrypsinogen A, the separation resulted in the displacement of ribonuclease A, with the more hydrophobic alpha-chymotrypsinogen A remaining on the column. On the other hand, when the experiment was repeated with cytochrome c added to the feed, all three feed proteins were displaced. Column simulations indicated that the combination of sample self-displacement occurring during the introduction of the feed, along with the dynamics of the initial displacement process at the column inlet was responsible for this behavior. These results indicate that for this class of hydrophobic-based selective displacers, in order for the protein to be selectively retained, the protein should be the most strongly retained feed component.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app