Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structural analysis of neural circuits using the theory of directed graphs.

A new approach to analysis of structural properties of biological neural circuits is proposed based on their representation in the form of abstract structures called directed graphs. To exemplify this methodology, structural properties of a biological neural network and randomly wired circuits (RC) were compared. The analyzed biological circuit (BC) represented a sample of 39 neural nuclei which are responsible for the control of the cardiovascular function in higher vertebrates. Initially, direct connections of both circuits were stored in a square matrix format. Then, standard algorithms derived from the theory of directed graphs were applied to analyze the pathways of the circuits according to their length (in number of synapses), degree of connectedness, and structural strength. Thus, the BC was characterized by the presence of short, reciprocal, and unidirectional pathways which presented a high degree of heterogeneity in their strengths. This heterogeneity was mainly due to the existence of a small cluster of reciprocally connected neural nuclei in the circuit that have access, through short pathways, to most of the network. On the other hand, RCs were characterized by the presence of long and mainly reciprocal pathways which showed lower and absolute homogeneous strengths. Through this study the proposed methodology was demonstrated to be a simple and efficient way to store, analyze, and compare basic neuroanatomical information.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app