JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The transcription factor Fra-2 regulates the production of extracellular matrix in systemic sclerosis.

OBJECTIVE: Fra-2 belongs to the activator protein 1 family of transcription factors. Mice transgenic for Fra-2 develop a systemic fibrotic disease with vascular manifestations similar to those of systemic sclerosis (SSc). The aim of the present study was to investigate whether Fra-2 plays a role in the pathogenesis of SSc and to identify the molecular mechanisms by which Fra-2 induces fibrosis.

METHODS: Dermal thickness and the number of myofibroblasts were determined in skin sections from Fra-2-transgenic and wild-type mice. The expression of Fra-2 in SSc patients and in animal models of SSc was analyzed by real-time polymerase chain reaction and immunohistochemistry. Fra-2, transforming growth factor beta (TGFbeta), and ERK signaling in SSc fibroblasts were inhibited using small interfering RNA, neutralizing antibodies, and small-molecule inhibitors.

RESULTS: Fra-2-transgenic mice developed a skin fibrosis with increases in dermal thickness and increased myofibroblast differentiation starting at age 12 weeks. The expression of Fra-2 was up-regulated in SSc patients and in different mouse models of SSc. Stimulation with TGFbeta and platelet-derived growth factor (PDGF) significantly increased the expression of Fra-2 in SSc fibroblasts and induced DNA binding of Fra-2 in an ERK-dependent manner. Knockdown of Fra-2 potently reduced the stimulatory effects of TGFbeta and PDGF and decreased the release of collagen from SSc fibroblasts.

CONCLUSION: We demonstrate that Fra-2 is overexpressed in SSc and acts as a novel downstream mediator of the profibrotic effects of TGFbeta and PDGF. Since transgenic overexpression of Fra-2 causes not only fibrosis but also vascular disease, Fra-2 might be an interesting novel candidate for molecular-targeted therapies for SSc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app