JOURNAL ARTICLE

Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis

Andreas D Peuke
Journal of Experimental Botany 2010, 61 (3): 635-55
20032109
Within the last two decades, a series of papers have dealt with the effects of nutrition and nutrient deficiency, as well as salt stress, on the long-distance transport and partitioning of nutrients in castor bean. Flows in xylem and phloem were modelled according to an empirically-based modelling technique that permits additional quantification of the uptake and incorporation into plant organs. In the present paper these data were statistically re-evaluated, and new correlations are presented. Numerous relationships between different compartments and transport processes for single elements, but also between elements, were detected. These correlations revealed different selectivities for ions in bulk net transport. Generally, increasing chemical concentration gradients for mineral nutrients from the rhizosphere to the root and from the xylem to leaf tissue were observed, while such gradients decreased from root tissue to the xylem and from leaves to the phloem. These studies showed that, for the partitioning of nutrients within a plant, the correlated interactions of uptake, xylem and phloem flow, as well as loading and unloading of solutes from transport systems, are of central importance. For essential nutrients, tight correlations between uptake, xylem and phloem flow, and the resulting partitioning of elements, were observed, which allows the stating of general models. For non-essential ions like Na(+) or Cl(-), a statistically significant dependence of xylem transport on uptake was not detected. The central role of the phloem for adjusting, but also signalling, of nutrition status is discussed, since strong correlations between leaf nutrient concentrations and those in phloem saps were observed. In addition, negative correlations between phloem sap sugar concentration and net-photosynthesis, growth, and uptake of nutrients were demonstrated. The question remains whether this is only a consequence of an insufficient use of carbohydrates in plants or a ubiquitous signal for stress in plants. In general, high sugar concentrations in phloem saps indicate (nutritional) stress, and high nutrient concentrations in phloem saps indicate nutritional sufficiency of leaf tissues.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20032109
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"