JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Functionalized monolayers on mesoporous silica and on titania nanoparticles for mercuric sensing.

Analyst 2010 January
Heterogeneous "naked-eye" colorimetric and spectrophotometric cation sensors were prepared by immobilization of an azobenzene-coupled receptor onto mesoporous silica (AR-SiO(2)) or titania nanoparticles (AR-TiO(2)) via sol-gel or hydrolysis reactions. The optical sensing ability of AR-SiO(2) was studied by addition of metal ions such as K(+), Ca(2+), Sr(2+), Co(2+), Cd(2+), Pb(2+), Zn(2+), Fe(3+), Cu(2+) and Hg(2+) ions (all as chlorides) in aqueous solution. Upon the addition of Hg(2+) ion in suspension, the AR-SiO(2) resulted in a color change from yellow to deep red. No significant color changes were observed in the parallel experiments with K(+), Ca(2+), Sr(2+), Co(2+), Cd(2+), Pb(2+), Zn(2+), Fe(3+) or Cu(2+) ion. These findings confirm that the AR-SiO(2) can be useful as chemosensors for selective detection of Hg(2+) ion over a range of metal ions in aqueous solution. Also, the color change of AR-SiO(2) was independent of the presence of anions NO(3)(-), ClO(4)(-), Br(-) and I(-). We also prepared a portable chemosensor kit by coating a 4 microm thick film of AR-TiO(2) onto a glass substrate. We found that this AR-TiO(2) film detects Hg(2+) ion at pH 7.4 with a sensitivity of 28 nM. Finally, we tested the effect of pH on AR-TiO(2) with Hg(2+) ion between pH 1.0 to 11.0. The absorbance and color changes of AR-TiO(2) were almost constant between pH 4 and 11. The results imply that the AR-TiO(2) film is applicable as a portable colorimetric sensor for the detection of Hg(2+) ion in the environmental field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app