JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of T-cell chemotaxis by programmed death-ligand 1 (PD-L1) in dry eye-associated corneal inflammation.

PURPOSE. Given that dry eye disease (DED) is associated with T cell-mediated inflammation of the ocular surface and that PD-L1 is an important negative or inhibitory regulator of immune responses constitutively expressed at high levels by corneal epithelial cells, the authors studied the expression and function of PD-L1 in DED. METHODS. Dry eye was induced in untreated wild-type mice, PD-L1(-/-) mice, and wild-type mice treated with anti-PD-L1 antibody by exposing these mice to a desiccating environment in the controlled environment chamber modified with subcutaneous administration of scopolamine. Real-time PCR was used to quantify the expression of chemokine gene transcript levels of multiple CC and CXC chemokine ligands and receptors. Epifluorescence microscopy was used to evaluate corneal infiltration of CD3(+) T cells after immunohistochemical staining. RESULTS. The increased expression of specific chemokine ligands and receptors in PD-L1(-/-) corneas of normal mice is associated with significant increases in T-cell homing into these corneas. Similar, and more enhanced, increases in T-cell infiltration were observed in PD-L1(-/-) DED mice or DED mice treated with anti-PD-L1 antibody compared with controls. In addition, the authors found significantly decreased expression of PD-L1 by corneal epithelial cells in DED and significantly increased corneal fluorescein staining score with PD-L1 functional blockade using anti-PD-L1 antibody. CONCLUSIONS. Downregulation of corneal epithelial PD-L1 amplifies dry eye-associated corneal inflammation and epitheliopathy by increasing the expression of chemokine ligands and receptors that promote T-cell homing to the ocular surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app