Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Notch-regulation upon Dll4-stimulation of TGFb-induced apoptosis and gene expression in human B-cell non-Hodgkin lymphomas.

Notch-signalling has been implicated as a pathogenetic factor and a therapeutical target in T-cell leukaemias and in some lymphomas of B-cell origin. Our aim was to investigate the role of Notch-signalling in apoptosis regulation in human non-Hodgkin B-cell lymphoma (B-NHL) cell lines and in primary chronic lymhocytic leukaemia (CLL) cells using Delta-like 4 (Dll4) ligand mediated Notch activation and gamma-secretase inhibitor (GSI) mediated Notch inhibition in vitro. The potential cross-talk of Notch with the transforming growth factor-beta (TGFb) pathway in apoptosis induction was also explored, and the effect of GSI on drug-induced apoptosis was assessed. Modulation of Notch-signalling by itself did not change the rate of apoptosis in B-NHL cell lines and in CLL cells. TGFb-induced apoptosis was decreased - but not completely abolished - by GSI in TGFb-sensitive cell lines, but resistance to the apoptotic effects of TGFb were not reversed by Notch activation or inhibition. Drug-induced apoptosis was not modified by GSI. We identified Hairy/Enhancer of Split (HES)-1 as a TGFb target gene in selected - TGFb-sensitive - B-NHL cell lines. TGFb-induced HES-1 was only partially Notch-dependent in later phases. Apoptosis regulation by TGFb and GSI was not dependent on the transcriptional regulation of c-myc. In conclusion, our data does not support a unifying role of Notch in regulating apoptosis in B-NHL, but warns that gamma-secretase inhibitors may actually counteract apoptosis in some cases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app