JOURNAL ARTICLE

Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical)

Yunho Lee, Urs von Gunten
Water Research 2010, 44 (2): 555-66
20015530
Chemical oxidation processes have been widely applied to water treatment and may serve as a tool to minimize the release of micropollutants (e.g. pharmaceuticals and endocrine disruptors) from municipal wastewater effluents into the aquatic environment. The potential of several oxidants for the transformation of selected micropollutants such as atenolol, carbamazepine, 17 alpha-ethinylestradiol (EE2), ibuprofen, and sulfamethoxazole was assessed and compared. The oxidants include chlorine, chlorine dioxide, ferrate(VI), and ozone as selective oxidants versus hydroxyl radicals as non-selective oxidant. Second-order rate constants (k) for the reaction of each oxidant show that the selective oxidants react only with some electron-rich organic moieties (ERMs), such as phenols, anilines, olefins, and deprotonated-amines. In contrast, hydroxyl radicals show a nearly diffusion-controlled reactivity with almost all organic moieties (k>or=10(9)M(-1) s(-1)). Due to a competition for oxidants between a target micropollutant and wastewater matrix (i.e. effluent organic matter, EfOM), a higher reaction rate with a target micropollutant does not necessarily translate into more efficient transformation. For example, transformation efficiencies of EE2, a phenolic micropollutant, in a selected wastewater effluent at pH 8 varied only within a factor of 7 among the selective oxidants, even though the corresponding k for the reaction of each selective oxidant with EE2 varied over four orders of magnitude. In addition, for the selective oxidants, the competition disappears rapidly after the ERMs present in EfOM are consumed. In contrast, for hydroxyl radicals, the competition remains practically the same during the entire oxidation. Therefore, for a given oxidant dose, the selective oxidants were more efficient than hydroxyl radicals for transforming ERMs-containing micropollutants, while hydroxyl radicals are capable of transforming micropollutants even without ERMs. Besides EfOM, ammonia, nitrite, and bromide were found to affect the micropollutant transformation efficiency during chlorine or ozone treatment.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20015530
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"