JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

QM/MM study of the absorption spectra of DsRed.M1 chromophores.

We report geometries and vertical excitation energies for the red and green chromophores of the DsRed.M1 protein in the gas phase and in the solvated protein environment. Geometries are optimized using density functional theory (DFT, B3LYP functional) for the isolated chromophores and combined quantum mechanical/molecular mechanical (QM/MM) methods for the protein (B3LYP/MM). Vertical excitation energies are computed using DFT/MRCI, OM2/MRCI, and TDDFT as QM methods. In the case of the red chromophore, there is a general blue shift in the excitation energies when going from the isolated chromophore to the protein, which is caused both by structural changes and by electrostatic interactions with the environment. For the lowest pipi* transition, these two factors contribute to a similar extent to the overall DFT/MRCI shift of 0.4 eV. An enlargement of the QM region to include active-site residues does not change the DFT/MRCI excitation energies much. The DFT/MRCI results are closest to experiment for both chromophores. OM2/MRCI and TDDFT overestimate the first vertical excitation energy by 0.3-0.5 and 0.2-0.4 eV, respectively, relative to the experimental or DFT/MRCI values. The experimental gap of 0.35 eV between the lowest pipi* excitation energies of the red (cis-acylimine) and green (trans-peptide) forms is well reproduced by DFT/MRCI and TDDFT (0.32 and 0.37 eV, respectively). A histogram spectrum for an equal mixture of the two forms, generated by OM2/MRCI calculations on 450 snapshots along molecular dynamics trajectories, matches the experimental spectrum quite well, with a gap of 0.23 eV and an overall blue shift of about 0.3 eV. DFT/MRCI appears as an attractive choice for calculating excitation energies in fluorescent proteins, without the shortcomings of TDDFT and computationally more affordable than CASSCF-based approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app