JOURNAL ARTICLE

QM/MM study of the absorption spectra of DsRed.M1 chromophores

Elsa Sanchez-Garcia, Markus Doerr, Walter Thiel
Journal of Computational Chemistry 2010, 31 (8): 1603-12
20014299
We report geometries and vertical excitation energies for the red and green chromophores of the DsRed.M1 protein in the gas phase and in the solvated protein environment. Geometries are optimized using density functional theory (DFT, B3LYP functional) for the isolated chromophores and combined quantum mechanical/molecular mechanical (QM/MM) methods for the protein (B3LYP/MM). Vertical excitation energies are computed using DFT/MRCI, OM2/MRCI, and TDDFT as QM methods. In the case of the red chromophore, there is a general blue shift in the excitation energies when going from the isolated chromophore to the protein, which is caused both by structural changes and by electrostatic interactions with the environment. For the lowest pipi* transition, these two factors contribute to a similar extent to the overall DFT/MRCI shift of 0.4 eV. An enlargement of the QM region to include active-site residues does not change the DFT/MRCI excitation energies much. The DFT/MRCI results are closest to experiment for both chromophores. OM2/MRCI and TDDFT overestimate the first vertical excitation energy by 0.3-0.5 and 0.2-0.4 eV, respectively, relative to the experimental or DFT/MRCI values. The experimental gap of 0.35 eV between the lowest pipi* excitation energies of the red (cis-acylimine) and green (trans-peptide) forms is well reproduced by DFT/MRCI and TDDFT (0.32 and 0.37 eV, respectively). A histogram spectrum for an equal mixture of the two forms, generated by OM2/MRCI calculations on 450 snapshots along molecular dynamics trajectories, matches the experimental spectrum quite well, with a gap of 0.23 eV and an overall blue shift of about 0.3 eV. DFT/MRCI appears as an attractive choice for calculating excitation energies in fluorescent proteins, without the shortcomings of TDDFT and computationally more affordable than CASSCF-based approaches.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20014299
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"