JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women.

The response of calf muscle strength, resting (R (bf)) and post-occlusive (PO(bf)) blood flow were investigated following 4 weeks resistance training with and without blood flow restriction in a matched leg design. Sixteen untrained females performed unilateral plantar-flexion low-load resistance training (LLRT) at either 25% (n = 8) or 50% (n = 8) one-repetition maximum (1 RM). One limb was trained with unrestricted blood flow whilst in the other limb blood flow was restricted with the use of a pressure applied cuff above the knee (110 mmHg). Regardless of the training load, peak PO(bf), measured using venous occlusion plethysmography increased when LLRT was performed with blood flow restriction compared to no change following LLRT with unrestricted blood flow. A significant increase (P < 0.05) in the area under the blood time-flow curve was also observed following LLRT with blood flow restriction when compared LLRT with unrestricted blood flow. No changes were observed in R (bf) between groups following training. Maximal dynamic strength (1 RM), maximal voluntary contraction and isokinetic strength at 0.52 and 1.05 rad s(-1) also increased (P < 0.05) by a greater extent following resistance training with blood flow restriction. Moreover, 1 RM increased to a greater extent following training at 50% 1 RM compared to 25% 1 RM. These results suggest that 4 weeks LLRT with blood flow restriction provides a greater stimulus to increase peak PO(bf) as well as strength parameters than LLRT with unrestricted blood flow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app