JOURNAL ARTICLE

Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure

Hyun Ju Kim, Nosratola D Vaziri
American Journal of Physiology. Renal Physiology 2010, 298 (3): F662-71
20007347
Oxidative stress and inflammation are constant features and major mediators of progression of chronic kidney disease (CKD). Nuclear factor erythroid-2-related factor-2 (Nrf2) confers protection against tissue injury by orchestrating antioxidant and detoxification responses to oxidative and electrophilic stress. While sources of oxidative stress and inflammation in the remnant kidney have been extensively characterized, the effect of CKD on Nrf2 activation and expression of its downstream gene products is unknown and was investigated. Subgroups of male Sprague-Dawley rats were subjected to 5/6 nephrectomy or sham operation and observed for 6 or 12 wk. Kidneys were then harvested, and Nrf2 activity and its downstream target gene products (antioxidant and phase II enzymes) were assessed. In addition, key factors involved in promoting inflammation and oxidative stress were studied. In confirmation of earlier studies, rats with chronic renal failure exhibited increased lipid peroxidation, glutathione depletion, NF-kappaB activation, mononuclear cell infiltration, and upregulation of monocyte chemoattractant protein-1, NAD(P)H oxidase, cyclooxygenase-2, and 12-lipoxygenase in the remnant kidney pointing to oxidative stress and inflammation. Despite severe oxidative stress and inflammation, remnant kidney tissue Nrf2 activity (nuclear translocation) was mildly reduced at 6 wk and markedly reduced at 12 wk, whereas the Nrf2 repressor Keap1 was upregulated and the products of Nrf2 target genes [catalase, superoxide dismutase, glutathione peroxidase, heme oxygenase-1, NAD(P)H quinone oxidoreductase, and glutamate-cysteine ligase] were reduced or unchanged at 6 wk and significantly diminished at 12 wk. Thus oxidative stress and inflammation in the remnant kidney are compounded by conspicuous impairment of Nrf2 activation and consequent downregulation of the antioxidant enzymes.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20007347
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"