JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models.

Oedogonium hatei was developed into an effective and efficient adsorbent for the removal of Ni(II) ions from aqueous solution. The adsorption studies of untreated and treated algal biomass (with 0.1M HCl) were compared in batch mode. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature and the Langmuir and Freundlich isotherms were found applicable in terms of relatively high regression values. The maximum monolayer adsorption capacity of the biosorbents (untreated and acid-treated algae), as obtained from the Langmuir adsorption isotherm, was found to be 40.9 and 44.2mg/g, respectively at 80min contact time, 5.0 pH, 0.7g/L algal dose, and 298K temperature. The thermodynamic parameters showed that the adsorption of Ni(II) ions onto algal biomass was feasible, spontaneous, and exothermic under the studied conditions. Kinetics of adsorption followed both first- and second-order rate equations and the process involving the rate-controlling step is complex involving boundary layer as well as intraparticle diffusion processes. The FTIR results of algal biomass showed that biomass has different functional groups and these functional groups are able to react with metal ion in aqueous solution. Biosorbent could be regenerated using 0.1M NaOH solution, with up to 70% recovery. The performance of this biosorbent was then compared with many other reported biosorbents for nickel removal and it was observed that the proposed adsorbent is effective in terms of its performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app