JOURNAL ARTICLE

Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist

M G Cascio, L A Gauson, L A Stevenson, R A Ross, R G Pertwee
British Journal of Pharmacology 2010, 159 (1): 129-41
20002104

BACKGROUND AND PURPOSE: Cannabis is the source of at least seventy phytocannabinoids. The pharmacology of most of these has been little investigated, three notable exceptions being Delta(9)-tetrahydrocannabinol, cannabidiol and Delta(9)-tetrahydrocannabivarin. This investigation addressed the question of whether the little-studied phytocannabinoid, cannabigerol, can activate or block any G protein-coupled receptor.

EXPERIMENTAL APPROACH: The [(35)S]GTPgammaS binding assay, performed with mouse brain membranes, was used to test the ability of cannabigerol to produce G protein-coupled receptor activation or blockade. Its ability to displace [(3)H]CP55940 from mouse CB(1) and human CB(2) cannabinoid receptors and to inhibit electrically evoked contractions of the mouse isolated vas deferens was also investigated.

KEY RESULTS: In the brain membrane experiments, cannabigerol behaved as a potent alpha(2)-adrenoceptor agonist (EC(50)= 0.2 nM) and antagonized the 5-HT(1A) receptor agonist, R-(+)-8-hydroxy-2-(di-n-propylamino)tetralin (apparent K(B)= 51.9 nM). At 10 microM, it also behaved as a CB(1) receptor competitive antagonist. Additionally, cannabigerol inhibited evoked contractions of the vas deferens in a manner that appeared to be alpha(2)-adrenoceptor-mediated (EC(50)= 72.8 nM) and displayed significant affinity for mouse CB(1) and human CB(2) receptors.

CONCLUSIONS AND IMPLICATIONS: This investigation has provided the first evidence that cannabigerol can activate alpha(2)-adrenoceptors, bind to cannabinoid CB(1) and CB(2) receptors and block CB(1) and 5-HT(1A) receptors. It will now be important to investigate why cannabigerol produced signs of agonism more potently in the [(35)S]GTPgammaS binding assay than in the vas deferens and also whether it can inhibit noradrenaline uptake in this isolated tissue and in the brain.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20002104
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"