JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor.

It is still a significant challenge to develop a Zn(2+)-selective fluorescent sensor with the ability to exclude the interference of some heavy and transition metal (HTM) ions such as Fe(2+), Co(2+), Ni(2+), Cu(2+), Cd(2+), and Hg(2+). Herein, we report a novel amide-containing receptor for Zn(2+), combined with a naphthalimide fluorophore, termed ZTRS. The fluorescence, absorption detection, NMR, and IR studies indicated that ZTRS bound Zn(2+) in an imidic acid tautomeric form of the amide/di-2-picolylamine receptor in aqueous solution, while most other HTM ions were bound to the sensor in an amide tautomeric form. Due to this differential binding mode, ZTRS showed excellent selectivity for Zn(2+) over most competitive HTM ions with an enhanced fluorescence (22-fold) as well as a red-shift in emission from 483 to 514 nm. Interestingly, the ZTRS/Cd(2+) complex showed an enhanced (21-fold) blue-shift in emission from 483 to 446 nm. Therefore, ZTRS discriminated in vitro and in vivo Zn(2+) and Cd(2+) with green and blue fluorescence, respectively. Due to the stronger affinity, Zn(2+) could be ratiometrically detected in vitro and in vivo with a large emission wavelength shift from 446 to 514 nm via a Cd(2+) displacement approach. ZTRS was also successfully used to image intracellular Zn(2+) ions in the presence of iron ions. Finally, we applied ZTRS to detect zinc ions during the development of living zebrafish embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app