JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Kinetics and mechanisms of p-nitrophenol biodegradation by Pseudomonas aeruginosa HS-D38.

The kinetics and mechanisms of p-nitrophenol (PNP) biodegradation by Pseudomonas aeruginosa HS-D38 were investigated. PNP could be used by HS-D38 strain as the sole carbon, nitrogen and energy sources, and PNP was mineralized at the maximum concentration of 500 mg/L within 24 h in an mineral salt medium (MSM). The analytical results indicated that the biodegradation of PNP fit the first order kinetics model. The rate constant kPNP is 2.039 x 10(-2)/h in MSM medium, KPNP+N is 3.603 x 10(-2)/h with the addition of ammonium chloride and KPNP+C is 9.74 x 10(-3)/h with additional glucose. The addition of ammonium chloride increased the degradation of PNP. On the contrary, the addition of glucose inhibited and delayed the biodegradation of PNP. Chemical analysis results by thin-layer chromatography (TLC), UV-Vis spectroscopy and gas chromatography (GC) techniques suggested that PNP was converted to hydroquinone (HQ) and further degraded via 1,2,4-benzenetriol (1,2,4-BT) pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app