COMPARATIVE STUDY
JOURNAL ARTICLE

Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph

Christopher Kai-shun Leung, Cong Ye, Robert N Weinreb, Carol Yim Lui Cheung, Quanliang Qiu, Shu Liu, Guihua Xu, Dennis Shun Chiu Lam
Ophthalmology 2010, 117 (2): 267-74
19969364

OBJECTIVE: To evaluate and compare the diagnostic agreement and performance for glaucoma detection between a confocal scanning laser ophthalmoscope and a spectral-domain optical coherence tomograph (OCT).

DESIGN: Prospective, cross-sectional study.

PARTICIPANTS: One hundred fifty-five subjects (79 glaucoma and 76 normal subjects).

METHODS: One eye from each individual was selected randomly for optic disc and retinal nerve fiber layer (RNFL) imaging by the Heidelberg Retinal Tomograph (HRT; Heidelberg Engineering, GmbH, Dossenheim, Germany) and the Spectralis OCT (Heidelberg Engineering), respectively. Glaucoma was defined based on the presence of visual field defects with the Humphrey visual field analyzer (Carl Zeiss Meditec, Dublin, CA). The agreement of the categorical classification ("within normal limits," "borderline," and "outside normal limits") at the temporal, superotemporal, superonasal, nasal, inferonasal and inferotemporal sectors of the optic disc were evaluated (kappa statistics). The diagnostic sensitivity and specificity between optic disc and RNFL assessment were compared (McNemar's statistics). Area under the receiver operating characteristic curve (AUC) of OCT RNFL and HRT optic disc parameters were computed after adjustment of age, axial length, and optic disc area.

MAIN OUTCOME MEASURES: Agreement of categorical classification, AUC of optic disc, and RNFL parameters.

RESULTS: The agreement of categorical classification between HRT and Spectralis OCT were fair to moderate (kappa ranged between 0.30 and 0.53) except for global (kappa = 0.63) and inferotemporal (kappa = 0.68) measurements. Defining glaucoma as having "outside normal limits" in the global and/or in >or=1 of the sectoral measurements, the respective sensitivities of Spectralis OCT and HRT were 91.1% and 79.8% (P = 0.012) at a similar level of specificity (97.4% and 94.7%). The AUC of OCT global RNFL thickness (0.978) was greater than those of HRT global rim area (0.905), vertical cup-disc ratio (0.857), rim-disc area ratio (0.897), and multivariate discriminant analysis (0.880-0.925; all with P<or=0.028) after covariates adjustment.

CONCLUSIONS: The diagnostic classification provided in the HRT and Spectralis OCT analysis report may not agree. At a comparable level of specificity, Spectralis OCT RNFL measurement attained a higher sensitivity than HRT optic disc measurement.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19969364
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"