Add like
Add dislike
Add to saved papers

Relationship between force-time and velocity-time characteristics of dynamic and isometric muscle actions.

Previous research has investigated the force-time curve characteristics of isometric and dynamic muscle actions; however, few studies have addressed their relationship to dynamic exercise velocity-time variables. The purpose of this study was to investigate relationships between velocity-time characteristics (high pull and vertical jump peak velocity and rate of velocity development [HPPV, HPRVD, VJPV, VJRVD]), force-time characteristics (isometric peak force [IsoPF], body mass adjusted isometric peak force [IsoPF/BM], isometric rate of force development at different millisecond windows [IsoRFD50-250], dynamic peak force [HPPF], body mass adjusted dynamic peak force [HPPF/BM]), and vertical jump height (VJHeight). Nineteen recreationally trained men (age 23.89 ± 2.92 yr; height 176.32 ± 7.06 cm; mass 78.76 ± 16.50 kg) completed 2 testing sessions. The first session consisted of 3 isometric mid-thigh pulls on a force plate with each repetition held for 3 seconds. On the second testing session, subjects completed 3 dynamic mid-thigh high pulls with 30% IsoPF followed by 3 vertical jumps on a force plate. The HPRVD correlated with IsoRFD50 (r = 0.52) and IsoRFD100 (r = 0.49). The HPPV correlated with IsoPF/BM (r = -0.60), IsoRFD50 (r = 0.56), and IsoRFD100 (r = 0.56). The VJHeight correlated with IsoPF/BM (r = 0.61), whereas VJPV correlated with IsoPF/BM (r = 0.62). These correlations suggest that explosive isometric force production within 50 to 100 milliseconds may influence the ability to accelerate an implement or body and attain high velocity, albeit in a moderate fashion. In addition, body mass adjusted strength may positively influence vertical jump parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app