Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Micro-ultrasound biofluid imaging and multi-component velocity measurement with micro echo particle image velocimetry technique.

This paper presents a high-resolution microscale ultrasonic particle image velocimetry technique (termed as Micro-EPIV) for measuring multi-component velocity vectors in microscale opaque flows such as blood and biofluid flow in microvessel. The method was tested by in vitro flow imaging and in vivo small animal blood flow imaging studies. The bioflow and blood flow were seeded with ultrasound contrast microbubbles, and were "illuminated" acoustically by 50 MHz and 30 MHz ultrasound, respectively. B-mode images obtained at imaging frame rate of 10 frames per second (fps) and 110 fps were constructed from back-scattered RF signals from bubbles. Then, consecutive images were processed with optimized PIV algorithm, to acquire multi-component velocity vectors. The results were in good agreement with analytical solutions and the velocities measured by ultrasound Doppler technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app