Add like
Add dislike
Add to saved papers

Medical safety of TASER conducted energy weapon in a hybrid 3-point deployment mode.

INTRODUCTION: TASER conducted energy weapons (CEW) deliver electrical pulses that can temporarily incapacitate subjects. The goal of this paper is to analyze the distribution of TASER CEW currents in the heart and surrounding organs and to understand theoretical chances of triggering cardiac arrhythmias, of capturing the vagus and phrenic nerves and producing electroporation of skeletal muscle structures. The CEW operates in either probe mode or drive-stun (direct contact) mode. There is also a hybrid mode in which current is passed from a single probe to either or both of 2 drive-stun electrodes on the weapon, presumed to be in direct contact with the skin.

METHODS AND RESULTS: The models analyzed herein describe strength-duration thresholds for myocyte excitation and ventricular fibrillation (VF) induction. Finite element modeling (FEM) was used to approximate current density in the heart for worst-case TASER electrode placement. The FEMs theoretically estimated that maximum TASER CEW current densities in the heart and in neighboring organs are at safe levels. A 3-point deployment mode was compared to probe-mode deployment. The margins of safety for the 3-point deployment were estimated to be as high as or higher than for the probe-mode deployment.

CONCLUSION: Numerical modeling estimated that TASER CEWs were expected to be safe when deployed in 3-point mode. In drive-stun, probe-mode or 3-point deployments, the CEWs had high theoretically approximated safety margins for cardiac capture, VF, phrenic or vagus nerve capture and skeletal muscle damage by electroporation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app