Add like
Add dislike
Add to saved papers

Isolation and characterization of osmotic stress-induced genes in poplar cells by suppression subtractive hybridization and cDNA microarray analysis.

Osmotic stress induces changes in the expression of various genes including those associated with drought tolerance, cell wall metabolism and defense. We isolated 852 cDNA clones, the expression of which is induced by osmotic stress, from cells of a hybrid poplar (Populus alba x Populus tremula var. glandulosa) by suppression subtractive hybridization after mannitol treatment. We examined how stress affected their expression using cDNA microarray analysis, which identified 104 genes significantly up-regulated by osmotic stress. These include genes with functions related to transcription, signal transduction, cell wall metabolism and defense. Other gene transcripts encoding cysteine protease and aquaporin are also up-regulated during osmotic stress. The function of about one-third of the genes in poplar cells that were significantly up-regulated by stress is not known, suggesting that the cell suspension may offer an opportunity of finding novel genes otherwise never expressed and that we still need more information at the molecular level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app