JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Phospholamban ablation rescues sarcoplasmic reticulum Ca(2+) handling but exacerbates cardiac dysfunction in CaMKIIdelta(C) transgenic mice.

Circulation Research 2010 Februrary 6
RATIONALE: We previously showed that transgenic mice expressing Ca(2+)/calmodulin-dependent protein kinase II delta(C) (CaMKII-TG) develop dilated cardiomyopathy associated with increased ryanodine receptors (RyR2) phosphorylation, enhanced sarcoplasmic reticulum (SR) Ca(2+) leak and lowering of SR Ca(2+) load. We hypothesized that phospholamban (PLN) ablation would restore SR Ca(2+) load and prevent the decreased ventricular contractility, dilation and mortality seen in CaMKII-TG.

OBJECTIVE: Our objectives were to generate CaMKII-TG mice lacking PLN, determine whether the maladaptive effects of cardiac CaMKIIdelta(C) expression were corrected, and establish the mechanistic basis for these changes.

METHODS AND RESULTS: CaMKII-TG were crossed with PLN knockout (PLN-KO) mice to generate KO/TG mice. Myocytes from wild type (WT), CaMKII-TG, PLN-KO and KO/TG were compared. The decreased SR Ca(2+) load and twitch Ca(2+) transients seen in CaMKII-TG were normalized in KO/TG. Surprisingly the heart failure phenotype was exacerbated, as indicated by increased left ventricular dilation, decreased ventricular function, increased apoptosis and greater mortality. In KO/TG myocytes SR Ca(2+) sparks and leak were significantly increased, presumably because of the combined effects of restored SR Ca(2+) load and RyR2 phosphorylation. Mitochondrial Ca(2+) loading was increased in cardiomyocytes from KO/TG versus WT or CaMKII-TG mice and this was dependent on elevated SR Ca(2+) sparks. Cardiomyocytes from KO/TG showed poor viability, improved by inhibiting SR Ca(2+) release and mitochondrial Ca(2+) loading.

CONCLUSIONS: Normalizing cardiomyocyte SR Ca(2+) loading in the face of elevated CaMKII and RyR2 phosphorylation leads to enhanced SR Ca(2+) leak and mitochondrial Ca(2+) elevation, associated with exacerbated cell death, heart failure and mortality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app