Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Intersession reliability of kinematic and kinetic variables during vertical jumps in men and women.

PURPOSE: To investigate the intersession reliability of selected kinematic and kinetic variables during countermovement vertical jumps (CMJs).

METHODS: Thirty-five men and 35 women performed CMJs on a force platform during four testing sessions each separated by 1 wk. Kinematic variables included time in the air (TIA), take-off velocity (TOV), total vertical displacement of the center of mass (TJH), and countermovement depth, whereas kinetic variables included positive impulse, negative impulse, vertical stiffness, and rates of force development. Systematic bias was assessed by calculating the 90% confidence interval of the change in the mean between consecutive testing sessions and between the first and final testing session for each variable. Coefficients of variation (CV) and intraclass correlation coefficients (ICC) were also calculated.

RESULTS: Systematic bias was observed only for peak rate of force development during the concentric phase of the movement. For TIA, TOV, and TJH, CV values ranged from 1.7% to 6.6%, with ICC values ranging from 0.82 to 0.97. The other variables showed greater variation (CV range: 1.7% to 39.9%; ICC range: 0.04 to 0.99). Only slight gender differences were found in the reliability statistics, and the reliability of most of the variables was diminished as the time between the testing sessions was increased.

CONCLUSION: Even though practitioners can expect good reliability for jump height measured from a force platform in men and women, other kinematic and kinetic variables often assessed during vertical jumps may not be reliable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app