Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ice slurry ingestion increases core temperature capacity and running time in the heat.

PURPOSE: To investigate the effect of ice slurry ingestion on thermoregulatory responses and submaximal running time in the heat.

METHODS: On two separate occasions, in a counterbalanced order, 10 males ingested 7.5 g·kg(-1) of either ice slurry (-1°C) or cold water (4°C) before running to exhaustion at their first ventilatory threshold in a hot environment (34.0°C ± 0.2°C, 54.9% ± 5.9% relative humidity). Rectal and skin temperatures, HR, sweating rate, and ratings of thermal sensation and perceived exertion were measured.

RESULTS: Running time was longer (P = 0.001) after ice slurry (50.2 ± 8.5 min) versus cold water (40.7 ± 7.2 min) ingestion. Before running, rectal temperature dropped 0.66°C ± 0.14°C after ice slurry ingestion compared with 0.25°C ± 0.09°C (P = 0.001) with cold water and remained lower for the first 30 min of exercise. At exhaustion, however, rectal temperature was higher (P = 0.001) with ice slurry (39.36°C ± 0.41°C) versus cold water ingestion (39.05°C ± 0.37°C). During exercise, mean skin temperature was similar between conditions (P = 0.992), as was HR (P = 0.122) and sweat rate (P = 0.242). After ice slurry ingestion, subjects stored more heat during exercise (100.10 ± 25.00 vs 78.93 ± 20.52 W·m(-2), P = 0.005), and mean ratings of thermal sensation (P = 0.001) and perceived exertion (P = 0.022) were lower.

CONCLUSIONS: Compared with cold water, ice slurry ingestion lowered preexercise rectal temperature, increased submaximal endurance running time in the heat (+19% ± 6%), and allowed rectal temperature to become higher at exhaustion. As such, ice slurry ingestion may be an effective and practical precooling maneuver for athletes competing in hot environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app