JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Amlodipine, a Ca2+ channel blocker, suppresses phosphorylation of epidermal growth factor receptor in human epidermoid carcinoma A431 cells.

Life Sciences 2010 January 17
AIMS: Amlodipine, a dihydropyridine Ca(2+) channel blocker, inhibits the proliferation of human epidermoid carcinoma A431 cells in vitro and in vivo. This study examined the underlying mechanism of this antiproliferative effect in relation to epidermal growth factor receptor (EGFR) signaling.

MAIN METHODS: The tyrosine phosphorylated active state of EGFR in A431 cells incubated with the test agents was evaluated by western blot with anti-phosphotyrosine antibody. EGFR phosphorylation levels in A431 xenograft tumors were assessed by immunostaining of matrigel plug sections and western blotting for phosphoEGFR in A431 xenograft tumor homogenates.

KEY FINDINGS: In vitro treatment of exponentially growing A431 cells with amlodipine decreased the tyrosine phosphorylation states of EGFR. Amlodipine also suppressed the EGF-stimulated phosphorylation of EGFR and a membrane scaffolding protein, caveolin-1, in serum-starved A431 cells. Amlodipine attenuated the EGF-stimulated phosphorylation of EGFR coimmunoprecipitated with caveolin-1 without affecting the EGFR/caveolin-1 interaction. Crosslinking experiments showed that amlodipine also suppressed the EGF-stimulated phosphorylation of EGFR predimers. Addition of cholesterol abolished these inhibitory effects of amlodipine plus its inhibition of cell growth. Furthermore, treatment of mice with amlodipine (10mg/kg/dayx7days, i.p.) decreased the levels of phosphorylated EGFR in A431 xenograft tumors.

SIGNIFICANCE: The results indicated that amlodipine inhibits tyrosine phosphorylation of EGFR in vitro and in vivo, possibly via modulating cholesterol-rich, caveolin-1-containing membrane microdomains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app