JOURNAL ARTICLE

The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro

Bojiang Shen, Aiqun Wei, Shane Whittaker, Lisa A Williams, Helen Tao, David D F Ma, Ashish D Diwan
Journal of Cellular Biochemistry 2010 February 1, 109 (2): 406-16
19950204
This study addresses the role of bone morphogenetic protein-7 (BMP-7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP-7 in monolayer and three-dimensional cultures. After 3 days of stimulation, BMP-7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7-21 days, BMP-7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real-time PCR, Western blot, histological, and immunohistochemical staining. BMP-7 supplementation appeared to enhance upregulation of lineage-specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP-7 in the presence of TGF-beta3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP-7 increased alkaline phosphatase activity and dose-dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP-7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP-7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co-ordinating with initial lineage-specific signals to accelerate cell fate determination. BMP-7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell-based tissue repair.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19950204
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"