Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of the combined blockade of EGFR and ErbB-2 on signal transduction and regulation of cell cycle regulatory proteins in breast cancer cells.

Treatment of breast cancer cells with a combination of the EGFR-tyrosine kinase inhibitor (EGFR-TKI) gefitinib and the anti-ErbB-2 monoclonal antibody trastuzumab results in a synergistic antitumor effect. In this study, we addressed the mechanisms involved in this phenomenon. The activation of signaling pathways and the expression of cell cycle regulatory proteins were studied in SK-Br-3 and BT-474 breast cancer cells, following treatment with EGFR and/or ErbB-2 inhibitors. Treatment with the gefitinib/trastuzumab combination produced, as compared with a single agent, a more prolonged blockade of AKT and MAPK activation, a more pronounced accumulation of cells in the G0/G1 phase of the cell cycle, a more significant increase in the levels of p27(kip1) and of hypophosphorylated pRb2, and a decrease in the levels of Cyclin D1 and survivin. Similar findings were observed with the EGFR/ErbB-2 inhibitor lapatinib. Gefitinib, trastuzumab, and their combination increased the stability of p27(kip1), with the combination showing the highest effects. Blockade of both receptors with gefitinib/trastuzumab or lapatinib induced a significant increase in the levels of p27(kip1) mRNA and in the nuclear levels of the p27(kip1) transcription factor FKHRL-1. Inhibition of PI3K signaling also produced a significant raise in p27(kip1) mRNA. Finally, down-modulation of FKHRL-1 with siRNAs prevented the lapatinib-induced increase of p27(kip1) mRNA. The synergism deriving from EGFR and ErbB-2 blockade is mediated by several different alterations in the activation of signaling proteins and in the expression of cell cycle regulatory proteins, including transcriptional and posttranscriptional regulation of p27(kip1) expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app