EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging.

Polymer microring resonators have been exploited for high-sensitivity and wideband photoacoustic imaging. To demonstrate high-sensitivity ultrasound detection, highfrequency photoacoustic imaging of a 49-microm-diameter black bead at an imaging depth of 5 mm was imaged photoacoustically using a synthetic 2-D array with 249 elements and a low laser fluence of 0.35 mJ/cm(2). A bandpass filter with a center frequency of 28 MHz and a bandwidth of 16 MHz was applied to all element data but without signal averaging, and a signal-to-noise ratio of 16.4 dB was obtained. A wideband detector response is essential for imaging reconstruction of multiscale objects, e.g., various sizes of tissues, by using a range of characteristic acoustic wavelengths. A simulation of photoacoustic tomography of beads shows that objects with their boundaries characteristic of high spatial frequencies and the inner structure primarily of low spatial frequency components can be faithfully reconstructed using such a detector. Photoacoustic tomography experiments of 49- and 301-microm-diameter beads were presented. A high resolution of 12.5 microm was obtained. The boundary of a 301-microm bead was imaged clearly. The results demonstrated that the high sensitivity and broadband response of polymer microring resonators have potential for high resolution and high-fidelity photoacoustic imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app