JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Renoprotective effects of paricalcitol on gentamicin-induced kidney injury in rats.

Vitamin D is thought to exert a protective effect on renal disease progression, but the underlying molecular mechanism remains unclear. We investigated whether paricalcitol ameliorates tubular dysfunction and fibrosis in gentamicin (GM)-induced renal injury. Two groups of rats were treated with GM (100 mg x kg(-1) x day(-1)), one of which was cotreated with paricalcitol (0.3 microg x kg(-1) x day(-1)) for 14 days and the other was not. The control group was treated with vehicle only. HK-2 cells were cultured with GM in the absence or presence of paricalcitol. Paricalcitol restored impaired renal function and the downregulated renal sodium transporters and aquaporin-1 expression caused by GM. ED-1-expressing monocyte/macrophage accumulation induced by GM was attenuated by paricalcitol treatment. Paricalcitol prevented upregulated inflammatory cytokines (TNF-alpha, IL-1beta, INF-gamma) and adhesion molecules (monocyte chemoattractant protein-1, ICAM-1, VCAM-1) induced by GM. In addition, paricalcitol effectively reversed TGF-beta1-induced epithelial-to-mesenchymal transition (EMT) process and extracellular matrix accumulation in GM-induced nephropathy. Increased collagen deposition and fibrosis in GM-treated kidney were ameliorated by paricalcitol. Paricalcitol also attenuated the upregulated NF-kappaB and phosphorylated ERK1/2 expression in HK-2 cells cultured with GM. In conclusion, paricalcitol prevents GM-induced renal injury by inhibiting renal inflammation and fibrosis, the mechanism of which is the interruption of NF-kappaB/ERK signaling pathway and preservation of tubular epithelial integrity via inhibiting EMT process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app