Fluorescence depolarization in poly[2-methoxy-5-((2-ethylhexyl)oxy)-1,4-phenylenevinylene]: sites versus eigenstates hopping

Jaykrishna Singh, Eric R Bittner, David Beljonne, Gregory D Scholes
Journal of Chemical Physics 2009 November 21, 131 (19): 194905
We report upon a theoretical study of singlet exciton migration and relaxation within a model conjugated polymer chain. Starting from poly[2-methoxy-5-((2-ethylhexyl)oxy)-1,4-phenylenevinylene] polymer chains, we assume that the pi-conjugation is disrupted by conformational disorder of the chain itself, giving rise to a localized Frenkel exciton basis. Electronic coupling between segments as determined by the coupling between the transition densities of the localized excitons gives rise to delocalized exciton states. Using a kinetic Monte Carlo approach to compute the exciton transfer kinetics within the manifold of either the dressed chromophore site basis or dressed eigenstate basis, we find that the decay of the polarization anisotropy of the exciton is profoundly affected by the delocalization of the exciton over multiple basis segments. Two time scales emerge from the exciton migration simulations: a short, roughly 10 ps, time scale corresponding to rapid hopping about the initial excitation site followed by a slower, 180 ps, component corresponding to long range hopping. We also find that excitations can become trapped at long times when the hopping rate to lower-energy states is longer than the radiative lifetime of the exciton.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"