JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method.

We demonstrate the synthesis of quaternary-alloyed Zn(x)Cd(1-x)S(y)Se(1-y) quantum dots (ZnCdSSe QQDs) across the entire composition range (x, y) = 0 to 1 with a size tunable from 4.0 to 10.0 nm by a facile, "green", phosphine-free, low-cost colloidal method. The ZnCdSSe QQDs have both composition- and size-dependent band gaps, which can be hybrid-engineered to span the entire visible spectrum. The new ZnCdSSe QQDs are easy to synthesize and have high quantum yields (up to 65%) without the necessity of overcoating a shell. These new quantum dots may find broad uses in biolabeling, biosensing, light-emitting diodes, and other nanodevice applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app