Homoeologous nonreciprocal recombination in polyploid cotton

Armel Salmon, Lex Flagel, Bao Ying, Joshua A Udall, Jonathan F Wendel
New Phytologist 2010, 186 (1): 123-34
Polyploid formation and processes that create partial genomic duplication generate redundant genomic information, whose fate is of particular interest to evolutionary biologists. Different processes can lead to diversification among duplicate genes, which may be counterbalanced by mechanisms that retard divergence, including gene conversion via nonreciprocal homoeologous exchange. Here, we used genomic resources in diploid and allopolyploid cotton (Gossypium) to detect homoeologous single nucleotide polymorphisms provided by expressed sequence tags from G. arboreum (A genome), G. raimondii (D genome) and G. hirsutum (AD genome), allowing us to identify homoeo-single nucleotide polymorphism patterns indicative of potential homoeologous exchanges. We estimated the proportion of contigs in G. hirsutum that have experienced nonreciprocal homoeologous exchanges since the origin of polyploid cotton 1-2 million years ago (Mya) to be between 1.8% and 1.9%. To address the question of when the intergenomic exchange occurred, we assayed six of the genes affected by homoeo-recombination in all five Gossypium allopolyploids using a phylogenetic approach. This analysis revealed that nonreciprocal homoeologous exchanges have occurred throughout polyploid divergence and speciation, as opposed to saltationally with polyploid formation. In addition, some genomic regions show multiple patterns of homoeologous recombination among species.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"