JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells.

Caveolin-1 (cav-1) is a multifunctional protein and major component of caveolae membranes serving important functions related to signal transduction, endocytosis, transcytosis, and molecular transport. We previously showed that cav-1 is overexpressed and secreted by metastatic prostate cancer cells. We now report that cav-1 gene transduction (Adcav-1) or recombinant cav-1 (rcav-1) protein treatment of cav-1-negative prostate cancer cell line LP-LNCaP or cav-1(-/-) endothelial cells potentiated VEGF-stimulated angiogenic signaling. Downregulation of cav-1 in prostate cancer cell line PC-3 or human umbilical vein endothelial cells (HUVECs) through cav-1 siRNA significantly reduced basal and VEGF-stimulated phosphorylation of VEGFR2 (Y951), PLCgamma1 (Y783) and/or Akt (S473 & T308) relative to those in control siRNA treated cells. Additionally rcav-1 stimulation of cav-1 siRNA treated HUVECs restored this signaling pathway. Confocal microscopy and immunoprecipitation analysis revealed association and colocalization of VEGFR2 and PLCgamma1 with cav-1 following VEGF stimulation in HUVECs. Interestingly, treatment of HUVECs with cav-1 scaffolding domain (CSD) caused significant reduction in the VEGF-stimulated phosphorylation of VEGFR2, PLCgamma1 and Akt suggesting that CSD inhibits cav-1-mediated angiogenic signaling. VEGF stimulation of HUVECs significantly increased tubule length and cell migration, but this stimulatory effect was significantly reduced by cav-1 siRNA and/or CSD treatment. The present study demonstrates that cav-1 regulates VEGF-stimulated VEGFR2 autophosphorylation and activation of downstream angiogenic signaling, possibly through compartmentalization of specific signaling molecules. Our results provide mechanistic insight into the role of cav-1 in prostate cancer and suggest the use of CSD as a therapeutic tool to suppress angiogenic signaling in prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app