Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

The role of histaminergic H1 and H3 receptors in food intake: a mechanism for atypical antipsychotic-induced weight gain?

Atypical antipsychotics such as olanzapine and clozapine are effective at treating the multiple domains of schizophrenia, with a low risk of extra-pyramidal side-effects. However a major downfall to their use is metabolic side-effects particularly weight gain/obesity, which occurs by unknown mechanisms. The present paper explores the potential candidature of histaminergic neurotransmission in the mechanisms of atypical antipsychotic-induced weight gain, with a focus on the histaminergic H1 and H3 receptors. Olanzapine and clozapine have a high affinity for the H1 receptor, and meta-analyses show a strong correlation between risk of weight gain and H1 receptor affinity. In addition, olanzapine treatment decreases H1 receptor binding and mRNA expression in the rat hypothalamus. Furthermore, a complex role is emerging for the histamine H3 receptor in the control of hunger. The H3 receptor is a pre-synaptic autoreceptor that inhibits the synthesis and release of histamine, and a heteroreceptor that inhibits other neurotransmitters such as serotonin (5-HT), noradrenaline (NA) and acetylcholine (ACh), which are also implicated in the regulation of food intake. Thus, the H3 receptor is in a prime position to regulate food intake, both through its control of histamine and its influence on other feeding pathways. We proposed that a mechanism for atypical antipsychotic-induced weight gain may be partly through the H3 receptor, as a drug-induced decrease in H1 receptor activity may decrease histamine tone through the H3 autoreceptors, compounding the weight gain problem. In addition, atypical antipsychotics may affect food intake by influencing 5-HT, NA and ACh release via interactions with the H3 heteroreceptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app