Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure.

BACKGROUND: Transgenic (TG) Ca/calmodulin-dependent protein kinase II (CaMKII)delta(C) mice have heart failure and isoproterenol (ISO)-inducible arrhythmias. We hypothesized that CaMKII contributes to arrhythmias and underlying cellular events and that inhibition of CaMKII reduces cardiac arrhythmogenesis in vitro and in vivo.

METHODS AND RESULTS: Under baseline conditions, isolated cardiac myocytes from TG mice showed an increased incidence of early afterdepolarizations compared with wild-type myocytes (P<0.05). CaMKII inhibition (AIP) completely abolished these afterdepolarizations in TG cells (P<0.05). Increasing intracellular Ca stores using ISO (10(-8) M) induced a larger amount of delayed afterdepolarizations and spontaneous action potentials in TG compared with wild-type cells (P<0.05). This seems to be due to an increased sarcoplasmic reticulum (SR) Ca leak because diastolic [Ca](i) rose clearly on ISO in TG but not in wild-type cells (+20+/-5% versus +3+/-4% at 10(-6) M ISO, P<0.05). In parallel, SR Ca leak assessed by spontaneous SR Ca release events showed an increased Ca spark frequency (3.9+/-0.5 versus 2.0+/-0.4 sparks per 100 microm(-1).s(-1), P<0.05). However, CaMKII inhibition (either pharmacologically using KN-93 or genetically using an isoform-specific CaMKIIdelta-knockout mouse model) significantly reduced SR Ca spark frequency, although this rather increased SR Ca content. In parallel, ISO increased the incidence of early (54% versus 4%, P<0.05) and late (86% versus 43%, P<0.05) nonstimulated events in TG versus wild-type myocytes, but CaMKII inhibition (KN-93 and KO) reduced these proarrhythmogenic events (P<0.05). In addition, CaMKII inhibition in TG mice (KN-93) clearly reduced ISO-induced arrhythmias in vivo (P<0.05).

CONCLUSIONS: We conclude that CaMKII contributes to cardiac arrhythmogenesis in TG CaMKIIdelta(C) mice having heart failure and suggest the increased SR Ca leak as an important mechanism. Moreover, CaMKII inhibition reduces cardiac arrhythmias in vitro and in vivo and may therefore indicate a potential role for future antiarrhythmic therapies warranting further studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app