Revisiting the prognostic value of preoperative (18)F-fluoro-2-deoxyglucose ( (18)F-FDG) positron emission tomography (PET) in early-stage (I & II) non-small cell lung cancers (NSCLC)

Mohit Agarwal, Govinda Brahmanday, Sunil K Bajaj, K P Ravikrishnan, Ching-Yee Oliver Wong
European Journal of Nuclear Medicine and Molecular Imaging 2010, 37 (4): 691-8

PURPOSE: The aims were to determine if the maximum standardized uptake value (SUV(max)) of the primary tumor as determined by preoperative (18)F-fluoro-2-deoxyglucose ((18)F-FDG) positron emission tomography (PET) is an independent predictor of overall survival and to assess its prognostic value after stratification according to pathological staging.

METHODS: A retrospective clinicopathologic review of 363 patients who had a preoperative (18)F-FDG PET done before undergoing attempted curative resection for early-stage (I & II) non-small cell lung cancer (NSCLC) was performed. Patients who had received any adjuvant or neoadjuvant chemotherapy or radiation therapy were excluded. The primary outcome measure was duration of overall survival. Receiver-operating characteristic (ROC) curves were plotted to find out the optimal cutoff values of SUV(max) yielding the maximal sensitivity plus specificity for predicting the overall survival. Survival curves stratified by median SUV(max) and optimal cutoff SUV(max) were estimated by the Kaplan-Meier method and statistical differences were assessed using the log-rank test. Multivariate proportional hazards (Cox) regression analyses were applied to test the SUV(max)'s independency of other prognostic factors for the prediction of overall survival.

RESULTS: The median duration of follow-up was 981 days (2.7 years). The median SUV(max) was 5.9 for all subjects, 4.5 for stage IA, 8.4 for stage IB, and 10.9 for stage IIB. The optimal cutoff SUV(max) was 8.2 for all subjects. No optimal cutoff could be established for specific stages. In univariate analyses, each doubling of SUV(max) [i.e., each log (base 2) unit increase in SUV(max)] was associated with a 1.28-fold [95% confidence interval (CI): 1.03-1.59, p = 0.029] increase in hazard of death. Univariate analyses did not show any significant difference in survival by SUV(max) when data were stratified according to pathological stage (p = 0.119, p = 0.818, and p = 0.882 for stages IA, IB, and IIB, respectively). Multivariate analyses demonstrated that SUV(max) was not an independent predictor of overall survival (p > 0.05).

CONCLUSION: Each doubling of SUV(max) as determined by preoperative PET is associated with a 1.28-fold increase in hazard of death in early-stage (I & II) NSCLC. Preoperative SUV(max) is not an independent predictor of overall survival.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"