Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation.

BACKGROUND & AIMS: Previously we reported that Akt inactivation determines the sensitivity of hepatocellular carcinoma (HCC) cells to bortezomib. Here we report that combined treatment with sorafenib and bortezomib shows synergistic effects in HCC.

METHODS: HCC cell lines (PLC/PRF/5, Huh-7, and Hep3B) were treated with sorafenib and/or bortezomib and analyzed in terms of apoptosis signal transduction. In vivo efficacy was determined in nude mice with PLC/PRF/5 xenografts.

RESULTS: Pretreatment with sorafenib enhanced bortezomib-induced apoptotic cell death by restoring bortezomib's ability to inactivate Akt in PLC/PRF/5 cells. Knocking down Akt1 by RNA-interference overcame apoptotic resistance to bortezomib in PLC/PRF/5 cells and ectopic expression of active Akt in HCC cells abolished the bortezomib sensitizing effect of sorafenib, indicating Akt inactivation plays a key role in mediating the combinational effects. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of phospho-Akt (P-Akt) expression induced by co-treatment with sorafenib and bortezomib, and 1, 9 di-deoxy-forskolin, a PP2A agonist, restored bortezomib's effect on P-Akt and apoptosis. Importantly, silencing of PP2A by RNA-interference reduced the apoptotic effect induced by sorafenib-bortezomib co-treatment, indicating that PP2A is indispensable for mediating the effects of these drugs. Notably, sorafenib with bortezomib increased PP2A activity in PLC/PRF/5 cells without altering protein levels of PP2A complex or the interaction between PP2A and Akt proteins. Finally, sorafenib plus bortezomib significantly suppressed PLC/PRF/5 xenograft tumor growth, down-regulated P-Akt expression, and up-regulated PP2A activity.

CONCLUSIONS: The combination of sorafenib and bortezomib shows synergy in HCC through PP2A-dependent Akt inactivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app