Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

An engineered knottin peptide labeled with 18F for PET imaging of integrin expression.

Knottins are small constrained polypeptides that share a common disulfide-bonded framework and a triple-stranded beta-sheet fold. Previously, directed evolution of the Ecballium elaterium trypsin inhibitor (EETI-II) knottin led to the identification of a mutant that bound to tumor-specific alpha(v)beta(3) and alpha(v)beta(5) integrin receptors with low nanomolar affinity. The objective of this study was to prepare and evaluate a radiofluorinated version of this knottin (termed 2.5D) for microPET imaging of integrin positive tumors in living subjects. Knottin peptide 2.5D was prepared by solid-phase synthesis and folded in vitro, and its free N-terminal amine was reacted with N-succinimidyl-4-18/19F-fluorobenzoate (18/19F-SFB) to produce the fluorinated peptide 18/19F-FB-2.5D. The binding affinities of unlabeled knottin peptide 2.5D and 19F-FB-2.5D to U87MG glioblastoma cells were measured by competition binding assay using 125I-labeled echistatin. It was found that unlabeled 2.5D and 19F-FB-2.5D competed with 125I-echistatin for binding to cell surface integrins with IC(50) values of 20.3 +/- 7.3 and 13.2 +/- 5.4 nM, respectively. Radiosynthesis of 18F-FB-2.5D resulted in a product with high specific activity (ca. 100 GBq/micromol). Next, biodistribution and positron emission tomography (PET) imaging studies were performed to evaluate the in vivo behavior of 18F-FB-2.5D. Approximately 3.7 MBq 18F-FB-2.5D was injected into U87MG tumor-bearing mice via the tail vein. Biodistribution studies demonstrated that 18F-FB-2.5D had moderate tumor uptake at 0.5 h post injection, and coinjection of a large excess of the unlabeled peptidomimetic c(RGDyK) as a blocking agent significantly reduced tumor uptake (1.90 +/- 1.15 vs 0.57 +/- 0.14%ID/g, 70% inhibition, P < 0.05). In vivo microPET imaging showed that 18F-FB-2.5D rapidly accumulated in the tumor and quickly cleared from the blood through the kidneys, allowing excellent tumor-to-normal tissue contrast to be obtained. Collectively, 18F-FB-2.5D allows integrin-specific PET imaging of U87MG tumors with good contrast and further demonstrates that knottins are excellent peptide scaffolds for development of PET probes with potential for clinical translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app