Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity.

PURPOSE OF REVIEW: Description of the role of oxidative stress in the pathogenesis of cerebral ammonia toxicity and hepatic encephalopathy.

RECENT FINDINGS: Ammonia plays a key role in the pathogenesis of hepatic encephalopathy, which manifests as a neuropsychiatric syndrome accompanying acute and chronic liver failure. One consequence of ammonia action on the brain is astrocyte swelling, which triggers the generation of oxidative/nitrosative stress at the level of NADPH oxidase, nitric oxide synthases and the mitochondria. A self-amplifying signaling loop between oxidative stress and astrocyte swelling has been proposed. Consequences of the ammonia-induced oxidative/nitrosative stress response are protein modifications through nitration of tyrosine residues and oxidation of astrocytic and neuronal RNA. Nitrosative stress also mobilizes zinc from intracellular stores with impact on gene expression. These alterations may at least in part mediate cerebral ammonia toxicity through disturbances of intracellular and intercellular signaling and of synaptic plasticity.

SUMMARY: Oxidative/nitrosative stress and a low-grade cerebral edema as key events in the pathogenesis of ammonia toxicity and hepatic encephalopathy may offer potential new strategies for treatment. Ammonia-induced oxidation of RNA and proteins may impair postsynaptic protein synthesis, which is critically involved in learning and memory consolidation. RNA oxidation offers a novel explanation for multiple disturbances of neurotransmitter systems and gene expression and the cognitive deficits observed in hepatic encephalopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app