JOURNAL ARTICLE

Rapamycin, unlike cyclosporine A, enhances suppressive functions of in vitro-induced CD4+CD25+ Tregs

Katarzyna Bocian, Jan Borysowski, Piotr Wierzbicki, Janusz Wyzgal, Danuta Klosowska, Agata Bialoszewska, Leszek Paczek, Andrzej Górski, Grazyna Korczak-Kowalska
Nephrology, Dialysis, Transplantation 2010, 25 (3): 710-7
19903662

BACKGROUND: A growing body of data shows that CD4(+)CD25(+) regulatory T cells (Tregs) can induce transplantation tolerance by suppressing immune responses to allograft antigens. However, both the generation and the suppressive capacity of CD4(+)CD25(+) Tregs can be substantially affected by different immunosuppressive drugs used in clinical transplantation. The goal of this study was to compare the effects of cyclosporine A and rapamycin on the induction and suppressive functions of human CD4(+)CD25(+) Tregs in vitro.

METHODS: CD4(+)CD25(+) Tregs were induced in two-way mixed lymphocyte reaction (MLR) in the presence of rapamycin (Treg-Rapa) or cyclosporine A (Treg-CsA). Tregs were identified in MLR cultures by flow cytometry using anti-CD4, anti-CD25, anti-CTLA-4, anti-CD122, anti-GITR mAbs and ant-PE-FOXP3 staining sets. Suppressive capacity of induced Tregs was evaluated by their capability to inhibit anti-CD3 Ab-triggered proliferation of peripheral blood mononuclear cells (PBMCs), as measured by flow cytometry. The concentration of TGF-beta1 in culture supernatants was measured by enzyme-linked immunosorbent assay.

RESULTS: Although both rapamycin and cyclosporine A suppressed the induction of CD4(+)CD25(+) Tregs during MLRs, this effect was significantly more pronounced in cells cultured with cyclosporine. On the other hand, only rapamycin significantly decreased the percentage of CD4(+)CD25(+) Tregs which expressed GITR, a negative regulator of Treg's suppressive capacity. Importantly, Treg-Rapa, unlike Treg-CsA, displayed significant suppressive activity and were capable of inhibiting the proliferation of anti-CD3 Ab-activated PBMCs. This activity was likely mediated by TGF-beta1.

CONCLUSIONS: Rapamycin, unlike cyclosporine A, does not inhibit the function of CD4(+)CD25(+) Tregs. This implies that rapamycin could contribute to the development of transplantation tolerance by promoting the induction of functional CD4(+)CD25(+) Tregs. Moreover, our results suggest that rapamycin could be combined with functional Tregs.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19903662
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"