JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

p21-activated kinase 1 participates in vascular remodeling in vitro and in vivo.

Hypertension 2010 January
Vascular smooth muscle cell hypertrophy, proliferation, or migration occurs in hypertension, atherosclerosis, and restenosis after angioplasty, leading to pathophysiological vascular remodeling. Angiotensin II and platelet-derived growth factor are well-known participants of vascular remodeling and activate a myriad of downstream protein kinases, including p21-activated protein kinase (PAK1). PAK1, an effector kinase of small GTPases, phosphorylates several substrates to regulate cytoskeletal reorganization. However, the exact role of PAK1 activation in vascular remodeling remains to be elucidated. Here, we have hypothesized that PAK1 is a critical target of intervention for the prevention of vascular remodeling. Adenoviral expression of dominant-negative PAK1 inhibited angiotensin II-stimulated vascular smooth muscle cell migration. It also inhibited vascular smooth muscle cell proliferation induced by platelet-derived growth factor. PAK1 was activated in neointima of the carotid artery after balloon injury in the rat. Moreover, marked inhibition of the neointima hyperplasia was observed in a dominant-negative PAK1 adenovirus-treated carotid artery after the balloon injury. Taken together, these results suggest that PAK1 is involved in both angiotensin II and platelet-derived growth factor-mediated vascular smooth muscle cell remodeling, and inactivation of PAK1 in vivo could be effective in preventing pathophysiological vascular remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app